Big Table of Binary Fluorine Compounds

While not as common as for instance oxygen, the element fluorine (F) reacts and forms compounds with almost all other elements.  In fact, fluorine is the most electronegative element (except for the unreactive neon on one particular electronegativity scale), and this gives it particular properties:  The pure element, the gas F₂, is extremely reactive, so much that it will react with almost all materials except a few noble gases (such as neon), certain other unreactive substance (such as nitrogen at standard conditions), and compounds that already contain fluorine (such as teflon).  In fact, the history of fluorine is highly interesting in itself, having claimed the death of more than one chemist who tried to isolate the pure element.

The following table gives an overview of the binary compounds of fluorine.  It shows compounds that contains the element fluorine (F) and another element.  The compounds are arranged by oxidation state and stoichiometry, showing that many elements form multiple compounds with fluorine.  Since fluorine is more electronegative than all elements with which it forms binary compounds, all compounds are called “fluorides”, the exception being fluorine azide (FN₃).

F

Download PDF

  • The table contains links to all Wikipedia articles, or to research papers if the Wikipedia article does not exist yet
  • The compounds are coloured according to their type:  molecular compounds in blue, ionic compounds in black, etc.  The exact legend is given within the plot.
  • As a bonus, we also include the binary fluorine minerals.

Please post additions and corrections here.

UPDATE:  Version 3

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s